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The stability of a high pressure compressor is investigated with special regard to the 
self-exciting effects in oil seals and labyrinths. It is shown how to stabilize a rotor in 
spite of these effects and even increase its stability with increasing pressure. 
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width of oil seals 
damping meff icients of oil seals or labyrinths 
modal damping factor 
shaft diameter 
frequency in cps 
displacement dependent oil film force 
friction force 
reference force for oil film forces (see equation (4)) 
imaginary unit, i= 4 T  
stiffness coefficient of oil seals or labyrinths 
mass of oil seal rings 
rotational speed 
pressure 
coordinate in radial direction 
shaft radius 
radius of the curvature of a pad 
Sommerfeld number, So = FdF* 
inlet swirl velocity 
circumferential velocity of the shaft surface 

real part of an eigenvalue 
ratio of width to diameter 
dimensionless damping coefficient 
angle between displacement and displacement dependent oil film forces 
bearing clearance 
seal ring clearance 
dimensionless radial displacement, ~-2r/6 
circumferential coordinate 
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h 
V imaginary part of eigenvalue 
7\ oil viscosity 
Y 
yb relative bearing clearance 

sz 

eigenvalue, 1 = a iv 

relative clearance of oil seal ring 

relative pad clearance, Yp = (RP-R)/R 

angular velocity of the rotor 
yP 

Frequently used subscripts 

subscript for x-direction (vertical) 
subscript for y-direction (horizontal) 
subscript for radial direction 
subscript for circumferential direction 
subscript for the direction of the displacement dependent oil film force 
subscript for the direction vertical to 1 

1. Introduction 

High pressure turbocompressors with a discharge pressure of 600 bar or more are 
very sensitive to instabilities because of the very high fluid forces in the seals. Often 
these compressors are used in off shore applications and therefore call for weight saving 
efforts like less casing per train hence more stages per rotor. This requires longer 
rotors, which make them even more sensitive to instabilities. 

Well known destabilizing effects are 
- Internal damping (shrink fit hysteresis, material damping). 
- Oil whip in bearings. 
- Oil whip in oil seals. 
- Self-excitation due to the flow in labyrinths. 

Internal damping is a source of self-excitation, if the compressor is run above its first 
critical speed, as high pressure compressors normally do. This effect ,however, is probably 
the least important one of the above mentioned effects. Problems due to it can be avoided by 
a proper design (minimization of the friction in shrink fits). 

Oil whip in bearings is prevented by using tilting pad bearings and therefore is not a 
real problem any more. 

Oil seals for shaft end sealing are often designed as floating seal rings (fig. 3). The ring 
is pressed against the casing due to the pressure difference. The friction at the contact 
surface inhibits the radial floating motion. If the ring is blocked it effects the rotor quite 
similarly to a plain bearing, hence can cause oil whip at high rotational speeds (often at 
approximately twice the first critical speed). Special care has to be taken of this problem 
in case of high pressure differences ( 200 bar or more), since this calls for long rings 
causing high oil film forces and also increases the friction enhancing a blocking of the 
ring. The danger of blocking has to be prevented by pressure balancing the ring and thus 
reducing the friction force. If the friction, however, is too small the ring can become 
unstable. 
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The self-exciting effect of the flow in labyrinths on impeller shrouds, hubs and the 
balance piston is the most severe destabilizing effect. Without design features to reduce it 
a high pressure compressor normally can not be run. Swirl brakes for example are such a 
design feature. Combined with the proper choice of labyrinths they not only prevent an 
instability but even increase the stability with increasing pressure. 

In this paper a high pressure compressor is demonstrated as an example of how to 
achieve a stable operation of the rotor. The destabilizing effects in the oil seals and 
labyrinths are handled in detail. It is also shown how to prevent an instability of the oil 
seal rings. The investigation is mainly carried out theoretically. The most important 
properties of the labyrinths, however, are checked by measured data. 

2. Description of the investigated compressor rotor 

The compressor we are dealing with in this paper was designed as a feasibilty study for 
an’sffshore reinjection application. Figure 1 shows the rotor. It has eight stages with an 
intercooler after the fourth stage. The basic data are 

Suction pressure 198 bar. 
Discharge pressure 700 bar. 
Molecular weight of the gas 
Mass flow 47.5 kgls. 
Rotor mass 265 kg. 
Bearing distance 1565 mm. 
Operating speed 13400 rpm. 

20.05. 

The impeller has just a slight shrink fit for centering. The moment is mainly 
transmitted by dowel pins, which also position the impeller axially. Sleeves are therefore 
not necessary. This design minimizes the internal friction and allows a large shaft diameter, 
hence a stiff shaft. 

The rotor is supported on two tilting pad bearings with four equal pads. The data of the 
two bearings are shown in table 1. The damping and stiffness coefficients as well as the oil 
viscosity are valid for operating conditions. The bearings are isotropic and have no cross 
coupling coefficients . 

Figure 2 shows the modal damping factors D and the frequencies f of the first two 
bending modes (forward and backward whirl) of the rotor for different rotational speeds. 
They are determined from the eigenvalues h=ativ of a Finite Element model of the rotor as 
follows: 

f = v I (2n) 

D = -U I lhl. 
and 

The eigenvalue extraction was carried out with the program MADYN (ref.1). The oil film 
viscosity which might change in reality with the rotational speed is assumed to be constant 
in the calculation. The influence of the seals is not taken into account here. It will be 
considered later. 
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The rotational speeds in fig.2 at intersections of the line f=n/60 with the frequency 
curves are critical speeds. The first critical speed is at 3700 rpm. The corresponding 
damping factor is 15%. The critical speeds with the second bending modes have a very high 
damping (>30%). Resonances at these speeds therefore will hardly be detectable. The 
shown eigenvalues are approximately valid for running the rotor up and down, since the 
pressure in the compressor then is low. Under operating conditions however they change 
considerably because of the fluid forces in the seals, as we will see later in paragraph 5. 

3. Description of the oil seals 

Figure 3 shows the floating seal ring of the oil seals. In order to tighten the high 
pressure against atmospheric pressure the ring is pressed against the casing by an axial 
force resulting from the pressure difference and the surfaces on which the pressures act. 
The axial force must not be too small since contact between the ring and the casing must be 
guaranteed in spite of pressure fluctuations. However it should also not be too large 
because of the friction force inhibiting the radial motion of the ring. 

Two extreme assumptions for the determination of the axial force can be made. The 
first is, that the outer edge of the contact surface tightens against the atmospheric 
pressure. This yields a maximum axial and friction force. Assuming that the inner edge 
tightens yields minimum forces. For our seal these forces are 

Maximum axial force: 22267 N. 
Minimum axial force: 4517 N. 
Maximum friction force: 3565 N. 
Minimum friction force: 570 N. 

For the friction forces a friction coefficient of 0.16 is assumed. 

A Finite Element calculation ( results not shown here ) considering the thermal 
deformation of the ring and the deformation due to the pressures showed that the first 
assumption yielding maximum forces seems to be more realistic. 

For the linear rotordynamic calculations (see paragraph 5) we assume either ideally 
floating or locked up rings. Reality of course is between these two extreme cases. 

For the ideally floating case we assume that the rings do not affect the rotor at all; that 
is,they are not modelled at all. 

For the locked up case we assume a centered position of the ring relative to the static 
position of the shaft. This is realistic, since the compressor is run up with low pressure; 
hence the friction force is low during running up and the ring can center itself very well. 
This is in favor of a uniform gap, which prevents the surfaces in the gap to be damaged by 
small particles transported in the seal oil. The self-excitation, however, then becomes a 
maximum, if the ring is blocked due to the increased pressure. 

For the latter case the oil seals are modelled by linear damping and stiffness 
coefficients in the same way as journal bearings. More accurately explained, they are 
considered as short, noncavitating journal bearings. 

398 



Our ring with a ratio of width to diameter of 0.35 can be considered as short. This 
allows us to neglect the pressure gradient in circumferential direction for small 
disturbances of the centeied position. The coefficients then can be calculated analytically 
from the Reynolds equation (ref.2). 

The bearing is considered as noncavitating, - since the axial pressure drop normally 
suppresses any cavitation for small disturbances of the centered position. 

The thus determined coefficients are 

as the ratio of width to diameter and 

as a reference force. 

These coefficients are twice as large as those of a cavitating short bearing (ref.2). The 
data of the oil seals to determine the reference force are 

width B = 38.5mm, 
shaft diameter D = 110.0mm, 
oil viscosity q = 0.015 Ns/m2, 
relative clearance Y = 1.36 O/o. 

4. Descriptlon of the labyrinth seals 

The investigation is carried out for the following labyrinth types on the shrouds,hubs 
and the balance piston. 

Balance piston : Comb grooved labyrinths. 
Hub : Straight- through labyrinths. 
Impeller shrouds : Straight-through, comb grooved labyrinths. 

All labyrinths are stator labyrinths. Their geometry is shown in figure 4 a,b,c. 

The gas data of each labyrinth are given in table 2. Data of the hub labyrinth of the 
eighthlstage are not given, since the influence of this labyrinth is negligible compared to 
the influence of the labyrinth on the balance piston just following it. 

The inlet swirl velocity of the fluid at each labyrinth is the main causeof the self- 
excitation of the rotor. It is zero for the hub labyrinths because of the diffuser and return 
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channel vanes. These labyrinths therefore rather have a damping than an exciting effect. 
For the other labyrinths the inlet swirl velocity is about 75% of the circumferential 
velocity of the rotor surface at the labyrinth inlet. When using swirl brakes it is only 
about 15% of the velocity of the rotor. These values were measured on a real compressor 
at high pressures at the author's company (ref.3). 

The labyrinths are modelled by damping and stiffness coefficients just like the oil 
seals. These coefficients are calculated according to the theory of Wyssmann et al. (ref.4). 
Figure 5 shows thus calculated coefficients for the two types of shroud labyrinths of the 
sixth stage for two different inlet swirl velocities ( with and without swirl brakes ). 

The cross coupling stiffness k,, increases with increasing inlet swirl. The line for the 
comb grooved labyrinth is shifted to smaller values compared to the straight-through 
labyrinth. For small inlet swirls, k,, even becomes negative. Therefore care must be 
taken concerning the excitation of backward whirling modes when using this labyrinth 
type. 

The direct damping coefficient d,, of the comb grooved labyrinth, hence its damping 
effect,is much smaller than the one of the straight-through labyrinth. For both labyrinths 
it almost does not depend on the inlet swirl. Due to this property it is possible to increase 
the stability of a compressor with increasing pressure. The exciting cross coupling 
stiffness increasing for higher pressures is reduced by swirl brakes, whereas the 
damping, which also increases for higher pressures, remains unaltered when reducing 
the swirl. 

The ratio of k,, to d,, is considerably larger for the comb grooved labyrinth, except 
in the small region where k,, is zero or almost zero. Increasing the damping of a rotor by 
an appropriate inlet swirl therefore seems to be easier when using straight-through 
labyrinths. When using the comb grooved type one has to realize an inlet swirl, where k,, 
is almost exactly zero. This is practically impossible. 

The direct stiffness k,, for both labyrinth types has considerable negative values for 
high inlet swirl velocities. For the relative velocity of 0.75 the direct labyrinth stiffness 
(of one labyrinth!) is about 16% of the stiffness of the rigid supported shaft. The shaft 
stiffness hereby is defined as a force applied in the middle of the shaft divided by the 
deflection at the same location due to this force. It can therefore be expected that the direct 
labyrinth stiffness can significantly reduce the natural frequencies of the rotor. 

The cross coupling damping d,, is a conservative term and therefore neither has an 
exciting nor a damping effect. It influences the rotor in a similar way as gyroscopic terms. 

In order to check the theory coefficients of a straight-through and comb grooved 
labyrinth were measured on the test stand of the Turbomachinery Laboratories at the 
Texas A & M University. The test stand is described in detail in reference 5. The 
geometries of the measured labyrinths are shown in fig.6. The tests were carried out with 
air against atmospheric pressure. 

Figure 7 and 8 show measured coefficients for an inlet pressure of 3.08 bar and a 
rotational speed of 9500 rpm as a function of the inlet swirl velocity. For Comparison 
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calculated coefficients for the test labyrinths are also shown.The measurements confirm 
the following properties of the calculated coefficients: 

- 
- 

- 

The cross coupling stiffness almost linearly depends on the inlet swirl. 
The cross coupling stiffness of the comb grooved labyrinth is negative for 
small positive inlet swirls. 
The direct damping almost does not depend on the inlet swirl for the comb 
grooved labyrinth. For the straight through labyrinths this property is not 
confirmed as well. It was better confirmed in the measurements presented in 
reference 3. 
The direct damping for the comb grooved labyrinth is much smaller than for 
the straight through labyrinth. 
The direct stiffness is negative. 

- 

- 

The experimental uncertainty indicated in the figures by the vertical lines is k3.5 
kN/m for stiffness and S O  Ns/m for damping. Hence the coincidence is acceptable. The 
calculated direct damping values tend to be too small. This however is not so severe, 
since one is always on the safe side when assessing the stability with calculated damping 
values. The magnitude of the direct stiffness values also tend to too small values. 

5. Stability of the rotor 

The stability of the rotor considering the fluid forces in the oil and labyrinth seals is 
assessed by calculated complex eigenvalues h = at iv of the Finite Element model of the 
rotor, respectively the modal damping factors D (see equation (2)). A positive damping 
factor means the rotor is stable, whereas it is unstable for negative damping factors. 

Figure 9 a and b shows the damping factor and the frequency of the first backward and 
forward whirling bending mode for ideally floating seal rings. They are shown for the two 
mentioned labyrinth types at the operating speed of 13400 rpm without labyrinth 
influence, a condition which is realized in practice for very low pressures, as well as 
with labyrinth influence for the full discharge pressure of 700 bar. One can recognize the 
tremendous influence of the labyrinths on the damping as well as on the frequencies. 

It can be seen that the forward whirl becomes unstable with increasing pressure for 
both labyrinth types if no swirl brakes are used. When using swirl brakes and straight- 
through labyrinths the damping of the rotor is considerably increased with increasing 
pressure. However when swirl brakes are used in combination with comb grooved 
labyrinths the backward whirl becomes unstable. This is due to the negative cross 
coupling stiffness of this labyrinth type for small inlet swirls (fig. 5). 

Figure 10 and 11 show results of the rotor with centrally blocked oil seal rings. The 
modes are quite different from those of the rotor with ideally floating seal rings. 

In figure 10 damping factors and natural frequencies of the first four modes are shown 
as a function of the rotational speed without labyrinth influence (p = 0). This figure is 
shown for a better understanding of the behavior of the rotor with blocked seal rings, 
although in reality a blocking of the seal rings is not possible for low pressures, that is 
for rotor speeds below the operating speed. 

40 1 



It can be seen that the frequency of mode 1 and 2 almost linearly depend on the rotor 
speed. The slopes of the frequency curves hereby are about 0.5. This clearly indicates that 
these frequencies are determined by the oil whirl in the seals, which approximately has a 
frequency of half the rotational speed. Mode number 1 becomes unstable at 8000 rpm. 
This is about twice the critical speed f,, of the rotor without seals (also see figure 2). The 
oil whirl here turns into the well known oil whip. 

Figure 11 shows the influence of labyrinths on the eigenvalues of the four modes in 
figure 10 at the operating speed. Results are only shown for straight-through labyrinths 
since comb grooved labyrinths are not recommendable because of the results discussed in 
figure 9. 

It can be seen that the labyrinths make the rotor more stable if swirl brakes are used. 
The rotor however still is slightly unstable. The seal rings therefore must be balanced at 
any rate in order to come closer to the behavior in figure 9. 

6. Stability of the seal ring 

If the friction force between casing and floating seal ring is reduced too much, the ring 
can become unstable. The corresponding mode can be calculated by modelling the rotor 
including unbound floating seal rings without friction forces. In this mode the rotor 
practically does not move and the ring describes a circular orbit around the center of the 
shaft. 

In the following we will calculate limit cycles of this unstable motion taking into 
account the nonlinear friction forces and also considering the oil film forces as nonlinear, 
since the expected deflections are in the order of magnitude of the seal ring clearance. 
Since the rotor practically does not move we consider it as fixed. 

The equations of motion of the ring in radial and circumferential direction are 
(fig.12) 

where F, and F@ are the forces on the ,ring in Ithe radial ,and circumferential direction.These 

forces consist of the oil film force and the friction force. They may be written as follows: 

where Fdr , Fdg 

and Ffr 9 Ffo 

are the displacement dependent oil film forces, 

are the friction forces. 

drri , drg&r , dgr; , dgg6r are the velocity dependent oil film forces 
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To determine limit cycles (i. e. stationary solutions of equation (7) and (8)) one has 

Substituting equation ( l l ) ,  (12), and (13) into equation (7), (8), (9) and (10) yields 

The solution of 4 can be extracted from equation (15): 

Equation (16) introduced in equation (14) delivers a quadratic equation for Ff: 

r 1 

The solution of this equation is 

The second solution of equation (17) with a w-w instead the "+" before the square root 
in equation (18) physically makes no sense. Since Fdr(r) is always negative (eq.(19)), 
the root is larger than dr+(r)r. Hence a *-I sign would always yield a friction force 

larger than the oil film force Fde(r) and $would become negative according to equation 
(16). This means it would have the same direction as the friction force, which is not 
possible, since the friction force is not the driving force of the motion. 

The displacement dependent forces in equation (16) and (18) are (fig. 12) 

where F* is the reference force according to equation (6) in paragraph 3 and So is the 
Sommerfeld number. 
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The damping coefficients in equation (16) and (18) are 

d rQ ( r )  = F*/(6Q) (b,,sin y cos y - b,, sin2y + b, ,cos2y - b, , sin y cos y) 

d w  ( r )  = F'/(6Q) (b2,cos2y - b,, sin y cos y - b, ,sin y cos y + b, sin2y) 
( 2 2 )  

( 2 3 ) 

where p2,, p,, , p12 and p, , are dimensionless damping coefficients in the 1,2 coordinate 
system in figure 12. 

The Sommerfeld number and the dimensionless damping coefficients are calculated 
numerically from the Reynolds equation. A analytical solution by neglecting the pressure 
gradient in circumferential direction as in paragraph 3 is not possible any more, because 
the motion of the ring is not only a small disturbance of the centered position. 

Figure 13 shows the relative displacement ~ - 2 r / 6  of the ring and the angle y for 
different Sommerfeld numbers. Fig 14 shows the dimensionless damping coefficients as a 
function of E. 

Figure 15 a,b show the curves of equilibrium points according to equation (18) and 
(16) calculated with the values in figure 13 and figure 14 for a mass of the ring of 5.135 
kg. It can be seen in figure 15a, that for friction forces below the maximum force of about 
2700 N exist two equilibrium points E~ and E . The first point E~ is unstable. For the 
friction force zero this already has been states at the beginning of this paragraph. For 
higher friction forces this can be verified by numerically solving equations (7) and (8). 
The diagram in figure 15a therefore can be understood as follows. If for any reason E 
becomes equal or larger than E, the centrifugal force will make the ring snap through to 
E,, where it describes a circular orbit with the eccentricity E, and the frequency 
according to figure 15b. 

If the frequency of this motion is close to a natural frequency of the rotor which is not 
damped too strong, the rotor vibration is affected by the ring motion. The frequency of the 
ring motion then can be seen in the spectrum of a rotor vibration probe. 

If the friction force is larger than the maximum in figure 15a the ring cannot describe 
a nondecaying motion on its own, hence it will follow the shafts motion. The ring should 
therefore be balanced in such a way that the friction force is slightly above the maximum 
in figure 15a. 

It must be mentioned however, that the equilibrium points are very sensitive to the 
bearing data which are calculated numerically and therefore must not correspond to a real 
situation. The deduced desired friction force therefore can only be understood as a rough 
estimation and has to be confirmed experimentally. 

7. Conclusions 

The stability of a high pressure compressor rotor was investigated with special regard 
to the self-excitation in the oil and labyrinth seals. The investigations were carried out 
theoretically. It was shown that both effects can easily destabilize the rotor, if they are 
not treated properly. 

For the labyrinth coefficients, measurements were also considered. A comparison with 
calculated coefficients showed that a theoretical stability analysis is on the safe side, since 
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the calculated direct damping 'coefficients tend to be too low.. Hence the theory is a 
sound, practical approach. 

The self-excitation in the oil seals designed as floating seal rings can be avoided by 
balancing the ring in order to reduce the friction between casing and ring and guarantee its 
floating. If the friction, however, is too small, the ring is excited by the oil film force to a 
circular motion around the center of the shaft. The minimum friction force to prevent this 
unwanted motion was deduced. 

The self-excitation in the labyrinths can be reduced by swirl brakes. Since the swirl 
brakes practically do not influence the damping but only the exciting cross coupling 
stiffnesses the rotor can become even more stable with increasing pressure. To achieve 
this however the properties of the chosen labyrinth type have to be taken into account. It 
was shown that a comb grooved labyrinth which has only little damping and negative cross 
coupling stiffnesses for small inlet swirls destabilizes the first backward whirling 
bending mode when using swirl brakes. An increasing stability with increasing pressure 
was achieved when using straight-through labyrinths. 
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Table 1 

Diameter 
Width 
Relative bearing clearance Yb 

Relative pad clearance Yp 

Oil viscosity 
Static load 
Stiffness coefficient 
Damping coefficient 

Bearing data (n = 13400 rprn) 

I bearing 1 I bearing 2 

0.1 
0.05 
0.2 
0.4 
0.01 
1251 
7.1 5 107 
5.1 6 104 

rn 
m 
010 

010 

Ns/m2 
N 
N/m 
Ns/m 

0.1 
0.05 
0.2 

0.4 
0.01 
1349 
7.23 lo7 
5.1 9 104 

m 
rn 
010 

010 

Ns/m2 
N 
N/m 
Ns/m 

Table 2 

a) Balance piston 

Gas data of the labyrinths 

mean viscosity [l 0-4Ns/m2] 
density before lab. [kg/rn3] 
pressure before lab. [bar] 
pressure after lab. [bar] 

b) Hub 

0.47 
348 
682 
198 

I I 1  2 3 4 5 6 7 1  

mean viscosity [l 0-4Ns/m2] 
density before lab. [kg/rn3] 
pressure before lab. [bar] 
pressure after lab. [bar] 

0.26 0.28 0.30 0.32 0.41 0.43 0.45 
236 250 262 318 325 332 339 
253 311 371 429 496 570 639 
239 297 356 419 479 551 618 

mean viscosity [l 0-4Ns/rn2] 
density before lab. [kg/rn3] 
pressure before lab. [bar] 
pressure after lab. [bar] 

0.26 0.28 0.30 0.32 0.41 0.43 0.45 0.47 
239 253 264 275 330 337 342 348 
239 297 356 419 479 551 618 682 
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Fig.12 
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